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Abstract (100 words)
This report discusses a new method of identifying erroneous data in temperature and

salinity (T/S) profiles measured by Argo profiling floats. The proposed method uses

World Ocean Atlas 2009 (WOA09) climatology to classify good against bad data. An

'n' sided polygon (convex hull) with least area encompassing all the points is

constructed based on the Jarvis March algorithm. The mean and standard deviation

fields of temperature and salinity obtained from WOA09 corresponding to each

standard depth are used for building these polygons. Subsequently Points In Polygon

(PIP) principle  which is implemented using ray casting algorithm is used to classify

the T/S data as within or without acceptable bounds. It is observed that various types

of anomalies in the Argo profile data viz., spikes, bias, sensor drifts etc can be

identified using this method.



Table of Contents

Abstract i

1 Introduction 1

2 Data and Methods 3

2.1 Point in Polygon (PIP) 8

2.2 Implementation of PIP 8

2.3 Jordan Curve Therom 9

3 Validation of proposed method 10

4 Discussion and Conclusions 15

Acknowledgements 16

References 16



i

Abstract

This paper discusses a new method of identifying erroneous data in temperature and

salinity (T/S) profiles measured by Argo profiling floats. The proposed method uses

World Ocean Atlas 2009 (WOA09) climatology to classify good against bad data. An 'n'

sided polygon (convex hull) with least area encompassing all the points is constructed

based on the Jarvis March algorithm. The mean and standard deviation fields of

temperature and salinity obtained from WOA09 corresponding to each standard depth

are used for building these polygons. Subsequently Points In Polygon (PIP) principle

which is implemented using ray casting algorithm is used to classify the T/S data as

within or without acceptable bounds. It is observed that various types of anomalies in

the Argo profile data viz., spikes, bias, sensor drifts etc can be identified using this

method.
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1. Introduction

Argo is an international program aimed at deploying 3000 instruments in the global

ocean. Two primary types of floats missions have evolved since the initial float design as

described in Davis et al., (1992). In the first mission, the float sinks to a prescribed

pressure (typically 1000 dbars) and cycles with a prescribed time period (typically 10

days) and in the second, the floats are programmed to perform drifting and profiling at

different depths. In November 2007, the global Argo array of profiling floats has reached

its initial target of 3000 operating floats worldwide. The array now provides for the first

time a global monitoring of ocean temperature and salinity (T/S) data in real time (Gould

et al. 2004).

The primary objectives of Argo program are 1) provide a quantitative characterization of

upper-ocean properties, 2) use the float observations to improve interpretation of satellite

altimetry data, 3) initialize ocean and coupled forecast models, and 4) provide input to

other global ocean analyses (Roemmich et al., 1999). With the core Argo (with

temperature and salinity) proved worthy, floats with additional sensors viz., chlorophyll,

turbidity, backscattering, nitrates etc are being deployed by various scientific groups. The

number of profiles obtained annually by Argo in the world oceans was more than 30,000

in 2003 and this number increased to about 147,833 in 2013. There are around 81,941

CTD casts in World Ocean Database (WOD) which reach deeper than 2000 m and  in

total there are 115,017 CTD casts in WOD deeper than 1500 m which makes Argo

contributing more than historic CTD casts deeper than 1500 m. Argo in conjunction with

many other data sets are used in studies related to climate change, sea level rise, ocean

heat content, mixed layer processes, assimilation into ocean models (GODAS),

generation of better analysis products etc. However some of the studies require that the

data from these instruments be of high quality as the results might be sensitive to biases

or instrument errors. These errors are to be identified and eliminated or flagged before the

data is put to use.

An outlier is an observation that is abnormal compared to its neighbors and lies at an

abnormal distance from other values in a random sample from a population. Spatial
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outliers are objects with distinct features from their surrounding neighbors in space.

Detection of spatial outliers helps reveal important and valuable information from large

spatial data sets. In the field of oceanography, for example, spatial outliers can be

associated with natural events like cyclones, Indian Ocean Dipole, El Nino and Southern

Oscillation or can be associated with errors due to sensor malfunction/degradation. In

oceanographic data, outliers are frequently represented in region, i.e., a group of

observations from an instrument which is malfunctioning or from a float who's sensors

have degraded over period after giving valuable data initially.

Over the past decade, geographic distribution of oceanographic T/S profile data has

become more uniform owing to the deployment of Argo profiling floats. From running

the ocean models operationally to the preparation of climatologies, oceanographic data is

widely put to use. Argo floats deployed by various countries are manufactured by

different manufacturers who use different types of pressure and CTD sensors. Each

country has their own choice of setting the measurement resolution for obtaining the T/S

samples. Owing to different methods of measurements, different instruments and

differences in handling the data, there is scope of leaving some bad data unnoticed. Even

though the Argo Data Management Team (ADMT) has proposed some quality checks,

different organizations/institutions employ additional methods for performing quality

checks on data, there can be scope for existence of erroneous data. It would be a

cumbersome process to individually pin point these bad data and various methods of

handling these erroneous data are developed.

Many quality control procedures were prescribed for quality control of data from Argo

floats. The ADMT had prescribed a set of 19 quality checks before the data is distributed

to the users (Wong et al., 2014). Further a secondary quality control methods based on

scientific analysis called Delayed Mode Quality Control (DMQC) is also in place (Wong

et al., 2003; Owens et al., 2009). But not all the data pertaining to global ocean is passed

through DMQC. There are also some independent methods of quality control set up by

some of the Data Acquisition Centres. Guinehut et al., (2009) proposed a quality control

method based on satellite altimetry. Cabanes et al., (2013) described the methods of
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quality control of Argo and other in situ data archived at Coriolis Centre. Udaya Bhaskar

et al., (2012) proposed a three way quality control methods to qualify the profile data

archived at INCOIS. However there are pros and cons with each of these methods. This

paper describes a new method to augment the existing procedures, where in profiles from

all floats can be treated for their quality with the use of best available climatology.

2. Data and Methods

Argo data pertaining to the Indian Ocean are downloaded from the www.incois.gov.in

web site. These data sets have been passed through the real-time quality control

procedures proposed by ADMT to be implemented by each Data Acquisition Center and

all eligible profiles are passed through delayed mode quality control (Wong et al., 2003).

To test the proposed method, real time quality controlled profiles are considered.

Figure 1. Patterns of salinity in the Indian Ocean when plotted against (a) longitude and
(b) latitude corresponding to the depth 0 mts obtained from World Ocean Atlas 2009.
Black, blue and red dots represent the mean, (mean - 2*SD), (mean + 2*SD) respectively.
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The method is based on the observation that temperature and salinity when plotted

against longitude and latitude represent a certain pattern of the parameter variability for

that region. Figure 1 shows the salinity patterns for the Indian Ocean when plotted

against the longitude (Fig 1a) and latitude (Fig 1b) corresponding to the 0 mts depths

obtained from the World Ocean Atlas 2009. From the patterns one can clearly demarcate

different types of waters viz., the Red sea, Persian Gulf and Bay of Bengal. Based on this

patterns a 'n' sided polygon is derived which is used for performing outlier analysis.

Figure 2. Generation of n-sided polygon (convex hull) based on the mean and 2*standard
deviation gridded fields of salinity from World Ocean Atlas 2009. Black, blue and red
dots represent the mean, (mean - 2*SD), (mean + 2*SD) respectively.
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Figure 3. Classification of good and bad data based on PIP and Jordan Curve Theorem.

In the proposed method the principle of convex hull and PIP together are used to identify

good vs bad Argo T/S profiles for a specified depth. The steps for application of the

proposed method are as follows:

1. Observed Argo temperature and salinity profiles are interpolated using Akima

spline (Akima, 1970) to the Levitus standard depths (Levitus, et al, 1994).

2. Use World Ocean Atlas (2009) temperature and salinity data corresponding

each standard depth to build a n-sided polygon (convex hull) with least area

encompassing the mean and 2*standard deviation fields of temperature and

salinity fields with vertices of (latitude, temperature/salinity), (longitude,

temperature/salinity). Sample polygon (convex hull) for the 0 meters depth of

salinity is shown in Figure. 1.

3. Subsequently the PIP algorithm is used to check if the observed Argo

temperature and salinity data (obtained in step 1) falls within or outside this n-

sided polygon.

4. Set the quality flags of good(bad) for data falling within(outside) the polygon

there by identifying wrong profile data (See Figure. 2).
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5. Use the polygon (convex hull) corresponding to the deepest depth (~ 2000 m)

to check if the Argo float sensors have any degradation etc.

We wish to mention that our method proposed here is applicable to two dimensions,

however this can be extended to three dimensions as well, where in a m dimensional n

sided polygons of latitude/longitude and temperature/salinity can be built and the

observed profiles from Argo floats can be checked for their correctness. The climatology

used for the proposed method is the gridded fields of temperature (Locarnini et al., 2010)

and salinity (Antonov et al., 2010) and their standard deviation fields obtained from

World Ocean Atlas 2009 (WOA09) of US National Oceanographic Data Centre (NODC).

These climatological mean and standard deviation fields are then used to build polygons

(convex hulls) for each standard depths. Since T/S profiles data from Argo floats are not

available at regular depths, we first uniformly interpolated them to the same standard

depths as provided in WOA09 using Akima spline (Akima et al., 1970). The scattered

observations thus obtained from Argo floats are checked to see if they are falling within

the corresponding polygon (obtained from climatology for that standard depth) using PIP

algorithm. Jarvis March (1973) algorithm also famously called as gift wrapping algorithm

was used for constructing polygon (convex hull). This is based on the principle of

building a convex hull given n number of points and has a complexity of O(nh) where n

is the number of points and h is the number of points on the convex hull. The algorithm

used for building the convex hull is described below:

Jarvis March Algorithm:

Given a set P of n points in the plane. we have to compute a convex hull (polygon) of P.

We represent the points in P by their Cartesian coordinates, in two arrays X[1 ... n] and

T[1.... n] corresponding to the latitude and temperature points obtained from the WOA09.

We will represent the convex hull as a circular linked list of vertices in counterclockwise

(CCW) order. Jarvis's march starts by computing the leftmost point l, i.e., the point whose

x-coordinate (latitude) is smallest, since we know that the left most point must be a

convex hull vertex. Then the algorithm repeats the steps with other points in P to find

each successive convex hull vertex, starting with l and continuing until we reach l again.

The vertex immediately following a point p is the point that appears to be furthest to the
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right to someone standing at p and looking at the other points. In other words, if q is the

vertex following p, and r is any other input point, then the triple p; q; r is in counter-

clockwise order.

JarvisMarch(X[1 ... n]; T[1... n]):

l = 1 (stage 1)

for i = 2 to n

if X[i] < X[l]

l = i

p = l

repeat (stage 2)

q = p + 1

for i = 2 to n

if p != i and CCW(p,i,q)

q = i

next[p] = q; prev[q] = p

p = q

until p = l

Jarvis’s March algorithm consists of two stages. During the first stage, it finds the

leftmost point by comparing the x-coordinates. After it finds the leftmost point, p is

initialized to that point. During the second stage, it finds the point that is furthest clock

wise (CW) to p. To do this, it first chooses an arbitrary point q, then it iterates over all

points to find the furthest CW point. This is very similar to finding the maximum element

in an array but here the comparison is not based on numerical values, but on CCW

property. More concretely, i is more CW than q for p if CCW(p,i,q)=true. This process

ends when p becomes the leftmost point again, at which time the string wraps completely

around the set of points.

This simple algorithm is used to build convex hull for all standard depth of climatology.

Figure 1 shows a sample n-sided polygon (convex hull) built based on the mean salinity

and 2*standard deviation data obtained from WOA09 for 0 meters depth. The black dots
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represents the mean salinity fields, while the red (blue) dots represent the upper(lower)

2*standard deviation fields respectively. Similar n-sided polygons for each standard

depths are generated and used for qualifying the Argo temperature and salinity data. Once

this n-sided polygon is constructed, the PIP algorithm is used to check if the observed

Argo temperature and salinity data fall inside or outside the polygon.

Figure 4. The number of intersections for a ray passing from the exterior of the polygon

to any point; if odd, it shows that the point lies inside the polygon. If it is even, the point

lies outside the polygon (Chong-Wei et al., 1997).

2.1 Point in Polygon (PIP)

In computational geometry, the PIP problem asks whether a given point in the plane lies

inside, outside, or on the boundary of a polygon. It is a special case of point location

problems and finds applications in areas that deal with processing geometrical data, such

as computer graphics, computer vision, geographical information systems (GIS), motion

planning, and Computer Aided Design.

2.2 Implementation of PIP

There are many algorithms available to check whether the given point lies inside the

polygon or not like Crossing Test (Shimrat 1962), Angle summation test, Triangle test

(Badouel 1990) and Ray Casting Algorithm. In the present work the "Ray Casting

Algorithm" was chosen for the purpose of identifying whether a given point lies inside or

outside the algorithm. Figure 4 shows a sample test for identifying the point to be within
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or outside of polygon. One simple way of finding whether the point is inside or outside a

simple polygon is to test how many times a ray, starting from the point and going in ANY

fixed direction, intersects the edges of the polygon. If the point in question is not on the

boundary of the polygon, the number of intersections is an even number if the point is

outside, and it is odd if inside. This algorithm is sometimes also known as the crossing

number algorithm or the even-odd rule algorithm, and is known as early as 1962 (Shimrat

1962).

The algorithm is based on a simple observation that if a point moves along a ray from

infinity to the probe point and if it crosses the boundary of a polygon, possibly several

times, then it alternately goes from the outside to inside, then from the inside to the

outside, etc. As a result, after every two "border crossings" the moving point goes

outside. This observation may be mathematically proved using the Jordan curve theorem.

2.3 Jordan Curve Theorm:

If J is a simple closed curve in R2, then the Jordan curve theorem, also called the Jordan-

Brouwer theorem states that R2 - J has two components (an "inside" and "outside"), with

J the boundary of each (Figure 5). In the words of Jordan "toute courbe [ferm´ee]

continue [et sans point multiple]divise le plan en deux r´egions, l’une ext´erieure, l’autre

int´erieure, cette derni`ere nepouvant se r´eduire `a z´ero (Jordan, 1893)

Figure 5. Illustration of the Jordan curve theorem. The Jordan curve (drawn in black)
divides the plane into an "inside" region (light blue) and an "outside" region (pink).
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In topology, a Jordan curve (simple closed curve) is a non-self-intersecting continuous

loop in the plane. The Jordan curve theorem asserts that every Jordan curve divides the

plane into an "interior" region bounded by the curve and an "exterior" region containing

all of the nearby and far away exterior points, so that any continuous path connecting a

point of one region to a point of the other intersects with that loop somewhere.

The algorithm used for implementing the PIP is given below:

Ray casting algorithm:

Let P be a simple convex polygon with vertices p1,p2,...pn and edges e1,e2, ....en and

q1(x0,y0), q2(x1,y1) .... qm(xm,ym) be set of Argo observation points. xi and yi represents

latitude/longitude and temperature/salinity respectively.

begin

for j = 1 to m

count = 0

for i = 1 to n

if line x=xj intersect with ei

(let yi be the y coordinates of the intersection between line x = xj and ei)

if yi < yj then

count = count + 1

end

if count is odd (xj,yj) is inside P

else (xj,yj) is outside P

end

end

Figure 3 explains a sample scenario of how to determine whether a given data is good

(bad) by virtue of it lying within (outside) the n-sided polygon. The biggest advantage of

this proposed method is that large number of profiles data can be checked for their

quality without manual intervention.

3. Validation of the proposed method
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In general temperature and pressure sensors are found to be robust and salinity sensors on

Argo floats are susceptible to changes, degradation owing to bio-fouling (Wong et al,

2003). Some of the recorded problems with salinity sensors are offsets, freshening due to

Tri-Butyl Tin Oxide (TBTO), drift after a set of cycles etc. Hence we concentrated on

checking the quality of salinity data in this section. Climatological means and standard

deviations of salinity corresponding to the profiling depth of the floats under

consideration are obtained from WOA09 and an n-sided polygon (convex hull) is

constructed using Jarvis March algorithm. Argo float time series for the profiling depth

values are then obtained and checked against this n-sided polygon using PIP algorithm. If

the points fall outside the polygon, the Argo time series is suspected to have a problem

(drift, bias, spike etc). Because the climatology is generated using large number of

observations spanning decades, a float is suspected to have a problem if the parking depth

salinity points fall outside the n-sided polygon which is constructed with a mean ±

2*standard deviations vertices.

To demonstrate the robustness of the proposed method, 5 typical floats are chosen which

represent different problems like drift, offset, grey listed etc. The details of the floats

chosen for the validation are given in the table 1.

S.No WMOID First Cycle Last Cycle Total Cycles Parking/Profiling

depth

1. 2900782 22/06/2007 07/01/2012 167 2000/2000

2. 2900877 11/09/2007 04/09/2012 183 2000/2000

3. 2901340 25/12/2011 19/12/2014 110 2000/2000

4. 2900783 09/07/2007 29/12/2012 201 2000/2000

5. 2900554 06/09/2005 27/06/2009 279 1000/2000

Table 1. Details of the floats chosen for validation of polygon method.
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Figure. 6. (a) n-sided polygon (grey shaded region) constructed with longitude, salinity
observations corresponding to the profiling depth (2000 m) of float WMOID 2900782.
(b) same as (a) but with latitude. (c) Trajectory of the float during its life time.

Some examples of good and anomalous floats are given below together with their

positions and n-sided polygons for the profiling depth. The WMO 2900782 travelling

southward in the Arabian Sea is a typical example of a good float. All the profiles are

observed to be good with the salinities corresponding to the profiling depth falling within

the n-sided polygon (Figure. 6).

The second example (WMO 2900877) is contaminated by TBTO fouling which is

evident from the fresher salinity profiles initially. The conductivity cell is more

susceptible to fouling and associated drift because of the possible change in the

dimension of the conductivity cell due to fouling. TBTO is used to improve the anti-

fouling in the conductivity cell (Thadathil et al., 2004). Sometime this causes erroneous

freshening in the initial profiles until the coating is washed off. Clearly one can see the

initial profiles falling outside the n-sided polygon (Fig. 7), thereby indicating the case of

the TBTO contamination. Also one can see the few profiles (cycle 33, 43) which are

spikes in the time series of the float which are observed to fall outside the polygon.
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Figure. 7. (a) n-sided polygon (grey shaded region) constructed with longitude, salinity
observations corresponding to the profiling depth (2000 m) of float WMOID 2900877.
(b) same as (a) but with latitude. (c) Trajectory of the float during its life time.

Figure. 8. (a) n-sided polygon (grey shaded region) constructed with longitude, salinity
observations corresponding to the profiling depth (2000 m) of float WMOID 2901340.
(b) same as (a) but with latitude. (c) Trajectory of the float during its life time.
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The third examples of the float is one which is observed to have drift in the salinity

sensor only for few cycles. This float is observed to have salinity drift between cycles 16

- 22. This can sometime happen due to worm entering into the conductivity pipe. When

the worm is washed out the salinity sensor tends to come back to normalcy. This is

clearly observed by the corresponding salinity values at profiling depth of 2000 m falling

way outside the n-sided polygon (Fig. 8). This floats seems to have recovered to

normalcy after cycle 22. The float with WMO 2900783 in the Bay of Bengal (Fig. 9)

shows a typical case of a float whose salinity at profiling depth (2000 m) is completely

offset to that of the climatology. All the salinity values corresponding to this float is

observed to be falling outside the n-sided polygon right from the cycle 1. This is typical

case of a greylisted float.

Fig. 9. (a) n-sided polygon (grey shaded region) constructed with longitude, salinity
observations corresponding to the profiling depth (2000 m) of float WMOID 2900783.
(b) same as (a) but with latitude. (c) Trajectory of the float during its life time.
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Fig. 10. (a) n-sided polygon (grey shaded region) constructed with longitude, salinity
observations corresponding to the profiling depth (2000 m) of float WMOID 2900554.
(b) same as (a) but with latitude. (c) Trajectory of the float during its life time.

The last example is that of a float with WMO 2900554 in the Arabian Sea (Fig. 10)

whose salinity started to drift starting from cycle 200 onwards. All the salinity values

corresponding to these cycles is observed to be falling outside the n-sided polygon from

this cycle onwards. The examples discussed above are only a illustration of the possible

cases among which the anomalous floats fall in ie., either a spike, offset, drift. These

examples demonstrate the usefulness of the proposed method for identifying bad profiles.

The biggest advantage of the proposed method is its applicability to suite of float data in

a single go.

4. Discussions and Conclusions

A new method for performing quality control of Argo data is proposed. The method is

based on building a convex hull and subsequently using Point In Polygon principle. Some

of the anomalies viz., spike, drift, offsets etc associated with the Argo profiling float data

can be identified. Mean and standard deviation fields from the latest available

climatology, WOA09 are used in construction of n-sided polygon. PIP concept is used for
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identifying good against bad profiles. The proposed method can be extended to other

oceanic regions (viz., Atlantic and Pacific) and checked for its usefulness with other

established methods. This method can be considered as a repetitive process as the

climatology keeps updating and the floats data is also updated based on other proposed

methods by the ADMT. For better results this methods can be augmented with other

methods in use like altimetry based QC and objectively analyzed based QC. This method

also urges updates to the reference climatology as it forms the backbone of the method.

Acknowledgements

The authors thank the Director, INCOIS for encouragement and for providing necessary

facilities to carry out the work. Authors thanks Dr Ann Gronnel Thresher of the

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart,

Tasmania, Australia for her valuable suggestion on the manuscript. Argo data is made

freely available by the Argo community.

References

Akima, H., (1970) A new method of interpolation and smooth curve fitting based on local

procedures, Journal of Association of Computers and Machines, 17, 589-602.

Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O.

K. Baranova, M. M. Zweng, and D. R. Johnson, (2010) World Ocean Atlas 2009,

Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS 69, U.S. Government Printing

Office, Washington, D.C., 184 pp.

Badouel, Didier, (1990) An Efficient Ray-Polygon Intersection, Graphics Gems (Andrew

S. Glassner, ed.), Academic Press, pp. 390-393.

Owens, W.B., Wong, A, (2009) An improved calibration method for the drift of the

conductivity sensor on autonomous CTD profiling floats by y–S climatology, Deep-Sea

Research I, 56, pp 450 - 457.



17

Wong, A. P. S., G. C. Johnson, and W. B. Owens, (2003) Delayed-mode calibration of

autonomous CTD profiling float salinity data by theta-S climatology, Journal of

Atmospheric and Oceanic Technology, 20(2), 308-318.

Cabanes, C., A. Grouazel, K. von Schuckmann, M. Hamon, V. Turpin, C. Coatanoan, F.

Paris, S. Guinehut, C. Boone, N. Ferry, C. de Boyer Montégut, T. Carval, G. Reverdin, S.

Pouliquen, and P. Y. Le Traon, (2013) The CORA dataset: validation and diagnostics of

in-situ ocean temperature and salinity measurements, Ocean Science, 9, 1-1.

Chong-Wei Huang and Tian-Yuan Shih, (1997) On the complexity of point-in-polygon

algorithms, Computers and Geosciences, Vol 23 (1), pp 109 - 118.

Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K.

Baranova, M. M. Zweng, and D. R. Johnson, (2010) World Ocean Atlas 2009, Volume 1:

Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Printing

Office, Washington, D.C., 184 pp.

Stephanie Guinehut, Christine Coatanoan, Anne-Lise Dhomps, Pierre-Yves Le Traon,

and Gilles Larnicol, (2009) On the Use of Satellite Altimeter Data in Argo Quality

Control. Journal of Atmospheric and Oceanic Technology, 26, 395–402.

Levitus S., R. Burgett and T.P. Boyer.  (1994b) World Ocean Atlas 1994 Volume 3:

Salinity. NOAA Atlas NESDIS 3.  U.S. Department of Commerce,Washington, D.C.  99

pp.

Davis, R.E., D.C. Webb, L.A. Regier, and J Dufour, (1992) The Autonomous Lagrangian

Current Explorer,  Journal of Atmospheric and Oceanic Technology, 9, 264 - 285.

Roemmich, D., and Coauthors, (2001) Argo: The global array of profiling floats.

Observing the ocean in the 21st century, C.J. Koblinsky and NR Smith, Eds., Melbourne

Bureau of Meteorology, 604 pp.



18

Shimrat, M., (1962) Algorithm 112, Position of Point Relative to Polygon, CACM, p.

434.

YUKO OHNO., NAOTO IWASAKA, FUMIAKI KOBASHI and YOSHIKO SATO,

(2009) Mixed Layer Depth Climatology of the North Pacific Based on Argo

Observations, Journal of Oceanography, 65, pp 1 - 16.

Wong, A., Robert Keely, Thierry Carval, and the Argo Data Management Team, (2014)

Argo quality control manual, ver 2.7, 47 pp.

T.V.S. Udaya Bhaskar, E. Pattabhi Rama Rao, R. Venkat Sheshu and R. D

Devender, (2012) A Note on Three Way Quality Control of Argo Temperature and

Salinity Profiles - A Semi-Automated Approach at INCOIS, International Journal of

Earth Sciences and Engineering, Vol 5(6), pp 1510 - 1514.

C. Jordan, (1893) Cours D’Analyse de l’ Ecole Polytechnique, Paris, second edition.

Jarvis, R. A. (1973) On the identification of the convex hull of a finite set of points in the

plane, Information Processing Letters 2: 18–21. doi:10.1016/0020-0190(73)90020-3

Jiang Zhao, Chang-Tien Lu, Yufeng Kou (2003), Detecting Region Outliers in

Meteorological Data, GIS’03, November 7–8, 2003, New Orleans, Louisiana, USA.

Thadathil, P., P. M. Muraleedharan, V. V. Gopalakrishna, G. V. Reddy, L. Ratnakaran,

C. Revichandran, and V. S. N. Murthy, (2004) Validation of ARGO data in the Indian

Ocean, Gayana, 68(2), 456-458.


	Ord02_GPS_dcs.pdf
	Ord03_Table of Contents.pdf
	Ord04_Abstract.pdf
	Ord05_ArgoQC_Polygon.pdf

